

SIG/TÜVIT EVALUATION CRITERIA
TRUSTED PRODUCT MAINTAINABILITY:
GUIDANCE FOR PRODUCERS
Version 15.0 (August 2, 2023)

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 1 / 16

Colophon

This document was reviewed and approved by the following people:

Reinier Vis
Head of evaluation laboratory
r.vis@sig.eu

Dennis Bijlsma
Head of Evaluators
d.bijlsma@sig.eu

Haiyun Xu
Quality Manager
h.xu@sig.eu

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 2 / 16

TABLE OF CONTENTS

1. Introduction 3

2. Definitions 4
2.1 System .. 4
2.2 Component ... 4
2.3 Module ... 4
2.4 Unit ... 4

3. Guidance for producers 5
3.1 Volume ... 5
3.2 Duplication ... 6
3.3 Unit size .. 6
3.4 Unit complexity .. 7
3.5 Unit interfacing ... 8
3.6 Module coupling ... 9
3.7 Component independence ... 10
3.8 Component entanglement ... 11

4. References 15

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 3 / 16

1. INTRODUCTION

This document is a companion to the SIG/TÜViT Evaluation Criteria Trusted Product Maintainability [SIG 2023]. The
SIG/TÜViT Evaluation Criteria for the quality mark TÜViT Trusted Product Maintainability are intended for the
standardized evaluation and certification of the technical quality of the source code of software products. The
purpose of such evaluation and certification is to provide an instrument to developers for guiding improvement of
the products they create and enhance, and to acquirers for comparing, selecting, and accepting pre-developed
software.

This guidance document provides explanation to software producers about the measurement method of SIG
applied for evaluation. For each measurement area, the threshold measurement values are provided that are
required for eligibility of certification at the level of 4 stars.

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 4 / 16

2. DEFINITIONS

The measurements are performed at different aggregation levels, as depicted in the figure below. This chapter
defines the terminology used to describe those levels.

Figure 1 Aggregation levels at which measurements are performed

2.1 SYSTEM
The system consists of all software needed to achieve the overall functionality of the product.

The system consists of one or multiple components, which may or may not be deployed separately, and may be
maintained by different development teams. The classification into systems and components does not depend on
the independence or reusability of components in other systems.

The system owner, which is the organization that holds property rights and that applies for certification, is
responsible for defining the exact system boundary during the scoping phase.

2.2 COMPONENT
A component is a subdivision of a system in which source code modules are grouped together based on a common
trait. Often components consist of modules grouped together based on a shared technical or functional aspect.
Top-level components are the first subdivision of a software system as seen by the developers, and are therefore
visible in the source code, typically through the directory structure or through naming conventions. Where in the
remainder of this document we refer to component, it is intended to mean top-level component.

2.3 MODULE
The notion of module is defined as a delimited group of declaration. This may correspond to different terms in
each programming language, but generally it corresponds to a file. For example, in object-oriented languages,
declarations are grouped into classes, which in turn usually correspond to a file.

2.4 UNIT
The notion of unit is defined as the smallest named piece of executable code. This may correspond to different
terms in each programming language. For example, for object-oriented languages (e.g. Java, C#), methods are
regarded as units whereas for procedural languages (e.g. C), units correspond to procedures or functions.
Constructs without a name cannot be re-executed by calling them and are therefore not considered units.

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 5 / 16

3. GUIDANCE FOR PRODUCERS

For each measurement area, the threshold measurement values are provided that are required for eligibility of
certification at the level of 4 stars. Note that these clarifications are meant as guidance for software producers,
providing sufficient conditions for satisfying the measurement model that is used during evaluation by SIG.

3.1 VOLUME
Larger software products are deemed to be harder to maintain. A larger system needs a more complex design and
a larger team. To be eligible for certification at the level of 4 stars with a total violation count of 10. To maximize
the rating of a product with respect to volume, the producer should strive to keep its source code concise.

For the evaluation of the volume property, the software product’s rebuild value is estimated on the basis of the
number of lines of source code. To make the lines of code of software artefacts written in different programming
languages comparable to each other, they are normalized on the basis of industry averages.

To be eligible for certification at the level of 4 stars, the total rebuild value of the product should not exceed 38
person-years. The following table lists the number of lines of code that is produced on average for some industry
standard technologies.

Language Lines of code in 38 person years

C++ 277,000

C# 380,000

Java 342,000

JavaScript 369,000

Python 289,000

Ruby 239,000

TypeScript 327,000

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 6 / 16

Figure 2 Example of system volume determined from lines of code for different technologies

3.2 DUPLICATION
Software products with less (textual) duplication are deemed to be easier to maintain. Any change in a piece of
duplicated code (likely) needs to be made in each of the duplicate occurrences. If this is not done correctly, it leads
to the risk of causing unexpected differences in behavior for different occurrences of similar functionality. Bugfixes
in pieces of duplicated code are especially risky, as they can lead to the continued existence of the bug if it’s not
correctly applied to all duplicate occurrences. To maximize the rating of a product for the duplication property, the
software producer should avoid multiple occurrences of the same fragments of code.

For the evaluation of the duplication property, the percentage of redundant lines of code is estimated. A code
fragment is considered duplicated if it is at least 6 lines of code long and repeated literally (modulo white-space) in
at least one other location in the source code. With optimal code reuse the fragment would still occur in the
codebase exactly once. So the amount of redundant code is the amount of occurrences of the duplicated fragment
minus one times the length of the fragment.

To be eligible for certification at the level of 4 stars, the percentage of redundant lines of code for each
programming language used should not exceed 5.3%.

Figure 3 Example of duplication between files

3.3 UNIT SIZE
Software products where more source code resides in large units are deemed to be harder to maintain. Short units
generally have a single responsibility, making them easier to test and reuse. Shorter units also allow for an easier
and better overview and understanding of their inner workings. To maximize the rating of a product for the unit
size property, the software producer should avoid large units.

The size of the units of a software product is determined by counting the number of lines of code within each unit.

To be eligible for certification at the level of 4 stars, for each programming language used:

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 7 / 16

■ The percentage of lines of code residing in units with more than 15 lines of code should not exceed 44.5%.
■ percentage in units with more than 30 lines of code should not exceed 20.3%.
■ The percentage in units with more than 60 lines should not exceed 6.7%.

Figure 4 Overview of Unit Size risk categories; it is a recommended practice to keep units short

3.4 UNIT COMPLEXITY
Software products where more source code resides in units with high logical complexity are deemed to be harder
to maintain. Complex units are harder to understand, increasing the difficulty of modifying them. A complex unit
has a high number of possible execution paths and therefore requires more test cases to fully test it. To maximize
the rating of a product for the unit complexity property, the software producer should avoid units with high
complexity.

The complexity of each unit is determined in terms of the McCabe cyclomatic complexity number. This number
represents the number of non-cyclic paths through the control-flow graph of the unit and can be calculated by
counting the number of decision points that are present in the source code.

To be eligible for certification at the level of 4 stars, for each programming language used:
■ The percentage of lines of code residing in units with McCabe complexity number higher than 5 should not

exceed 19.3%.
■ The percentage of lines of code residing in units with McCabe complexity number higher than 10 should not

exceed 6.8%.
■ The percentage of lines of code residing in units with McCabe complexity number higher than 25 should not

exceed 0.9%.

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 8 / 16

Figure 5 Overview of Unit Complexity risk categories and visualization of execution paths through a simple and a complex unit

3.5 UNIT INTERFACING
Software products where more source code resides in units with large interfaces are deemed to be harder to
maintain. Units with a large interface often indicate a unit with multiple responsibilities which is harder to modify.
Large interfaces are also error prone, especially if multiple parameters have the same type and can thus be
accidentally supplied in the wrong order. This also impedes the speed of development. To maximize the rating of a
product for the unit interfacing property, the software producer should avoid units with large interfaces.

The size of the interface of a unit can be quantified as the number of parameters (also known as formal
arguments) that are defined in the signature or declaration of a unit.

To be eligible for certification at the level of 4 stars, for each programming language used:
■ The percentage of lines of code residing in units with 3 or more parameters should not exceed 14.4%.
■ The percentage in units with 5 or more parameters should not exceed 3.0%.
■ The percentage in units with 7 or more parameters should not exceed 0.8%.

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 9 / 16

Figure 6 Overview of Unit Interfacing risk categories; it is a recommended practice to keep interfaces small

3.6 MODULE COUPLING
Software products where more source code resides in modules that are strongly coupled with other modules are
deemed to be harder to maintain. To maximize the rating of a product for the module coupling property, the
software producer should avoid having strong coupling between modules.

Moreover, for modules that do require high(er) coupling, the software producer should keep them as small as
possible, for example through abstraction of inner logic to other modules.

High module coupling is often a sign of lacking separation of concerns into separate modules. A good separation of
concerns leads to modules that have a single responsibility which are easier to analyze, test, and modify. Changes
to larger modules with tight coupling tend to cause a ripple effect through the codebase. Keeping these modules
small through abstraction, for example by using interfaces, mitigates this effect.

The coupling of the modules of a software product can be quantified as the number of incoming dependencies,
such as invocations, per module.

To be eligible for certification at the level of 4 stars, for each programming language used:
■ The percentage of lines of code residing in modules with a number of incoming dependencies above 10 should

not exceed 10.4%.
■ The percentage in modules with a number of incoming dependencies above 20 should not exceed 5.6%.
■ The percentage in modules with a number of incoming dependencies above 50 should not exceed 1.8%.

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 10 / 16

Figure 7 Overview of Module Coupling risk categories; It’s a recommended practice to keep modules loosely coupled

3.7 COMPONENT INDEPENDENCE
All modules in a component are classified as either hidden or exposed. A module is hidden if there are no incoming
dependencies from modules in other components. Otherwise, the module is classified as exposed.

Component independence is calculated as the percentage of code that is contained in modules that are classified
as hidden. Maximizing the percentage of code that is classified as hidden ensures that changes within the
components are not propagating to other components, which makes maintenance easier. Good isolation of
components also allows for distribution of maintenance responsibility for separate components among different
teams. To maximize the rating of a product for the component independence property, the software producer
should maximize the percentage of code classified as hidden.

To be eligible for certification at the level of 4 stars the percentage of code residing in modules without incoming
cross-component dependencies should not drop below 92.4%.

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 11 / 16

Figure 8 Component Independence risk categories; It is recommended to keep the percentage of exposed code (i.e., with
incoming dependencies) in components low. Note that outgoing dependencies do not influence the metric.

3.8 COMPONENT ENTANGLEMENT
Each module in the system is contained within a component. Component Entanglement considers both these
components and the communication lines defined between components; these are the directed lines between
components over which dependencies go from one component to the other. The weight of a communication line
is equal to the total number of dependencies it consists of. Every additional communication line adds additional
complexity to the architecture. This makes it harder to make changes in isolation and to extend the architecture.

In addition to the amount of communication lines, certain patterns formed by them can also make the architecture
more complex and consequently development more difficult.

Therefore, inter-component communication should be limited and is expected to respect certain rules. Some of
these rules are specific to the domain in which the system is used, and relate to the functionality provided by the
system. Other communication rules are related to (technical) best practices, and apply regardless of the
functionality of the system.

Component entanglement is measured as the combination of two numbers:
■ Communication density
■ Communication violation degree

The latter is computed from three violations:
■ Cyclic dependencies
■ Indirect cyclic dependencies
■ Transitive dependencies

Below are the definitions for these terms.

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 12 / 16

Communication density is calculated by dividing the number of communication lines between components by the
number of connected components. Connected components are components with at least one incoming or
outgoing communication line. Components that do not feature any communication at all are thus excluded, as
these do not participate in the communication.

Cyclic dependencies occur when component A has a dependency on component B, but component B also has
dependency on component A. This makes it harder to maintain components in isolation: changes to one of the
components can have an impact on the other and vice versa.
The weight of the violation is equal to the weight of the lowest weighted communication line involved in the
violation, as removing this communication line, will remove the cyclic dependency in a way that most likely
requires the lowest effort. So, in the example below the weights of the communication lines involved are 1 and 10,
which means that the violation will receive a weight of 1.

Figure 9 Example of cyclic dependencies

Indirect cyclic dependencies occur when a set of components does not have direct cyclic dependencies, but the
communication lines between the involved components form a cycle. Resulting in every involved component being
either directly or indirectly dependent on every other involved component. The problems associated with
maintaining such components are similar to “regular” cyclic dependencies.
Indirect cyclic dependencies are considered a less severe violation than direct cyclic dependencies. The reason is
that the maintenance problem is not directly bidirectional: a change to B will impact A, but a change to A will not
automatically have direct impact on B. Compared to direct cyclic dependencies, in this situation it is somewhat
easier to maintain the components independently.

As the goal of finding violations is to find communication lines that are most likely not intended in the we do not
want to consider the communication lines that are already indicated as unintended in the “regular” cyclic
dependency violations when looking for indirect cyclic dependencies. Therefore, as the first step is to remove all
lightest weight communication lines in “regular” cyclic dependencies from the graph, if both communication lines
in a specific cyclic dependency are equally weighted, we remove both. Given the resulting subgraph, the approach
towards detecting indirect cyclic dependency violations, and the approach for calculating the violation weight, are
identical to the cyclic dependency detection described above.

Figure 10 Example of indirect cyclic dependencies

A

B

1 10

B

C

A

D

10

8

3

15

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 13 / 16

Transitive dependencies occur when a component has both indirect and direct (transitive) dependencies to
another component. Three criteria need to be met for the dependencies through a specific communication line to
be considered as violating transitive dependencies:
■ The communication line is transitive. In the example below, component B has a direct dependency to

component D, but it also has an indirect dependency via component C. This makes the direct dependency
transitive.

Figure 11 Example of transitive dependencies, with the violating dependency appearing in red

■ The transitive communication line is to a component that also has at least one outgoing communication line. In
the previous example, the dependency from component B to component D is considered a violation. Whereas
a dependency from component B to component E would not have been considered a violation, because
component E does not have outgoing dependencies. The reason for this exception is that components without
outgoing dependencies are typically intended for code reuse, such as libraries or components containing
common code.

■ The transitive communication line must be the lowest weighted communication line of all distinct
communication lines on all paths from the first to the second component connected by the transitive
communication line.

Figure 12 Example of transitive dependencies, without violations

In the example in Figure 12, the dependencies from B to E are not considered violating as the weight of the
communication line from B to D, is lower than the weight of the direct communication line from B to E. This
exception is made as a transitive dependency violation is seen as a communication line bypassing the normal
code flow. By extension we expect the normal code flow through the indirect path(s) to be higher or equally
weighted than the bypassing direct communication line. As the weight of the flow through a path of multiple

B

C

A

D

E

10

14 1

18

5

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 14 / 16

communication lines is limited by the lowest weighted communication line in that path, the weight of the
transitive dependency should be lower than or equal to this lowest weight communication line to be violating.

The weight of the violation is equal to the weight of the transitive communication line. So, in the first example
above the weight of the violation would be 1.

Communication violation degree is calculated by adding up the weights for all violations and dividing this by the
total weight of all communication lines in the component graph. Note that the above violations are checked in
order, and a communication line can only be marked as a single type of violation.

For the final calculation of component entanglement, the values for communication density and communication
violation degree are normalized by dividing by the maximal values for each in our benchmark and then combined
to compute the final score. To maximize the rating of a product for the component entanglement property, the
software producer should minimize the communication violation degree and minimize the communication density.

To be eligible for certification at the level of 4 stars with a communication violation degree of 0.01, the
communication density should not exceed 1.12. To be eligible for certification at the level of 4 stars with a
communication violation degree of 0 the communication density should not exceed 1.3. Due to the nature of the
metric a lower communication violation degree allows for a higher communication density to still be eligible for a 4
star rating and vice versa.

Figure 13 Example Component Entanglement; It is a recommended practice to avoid complex structures in the dependency
graph and to minimize the number of communication lines

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 15 / 16

4. REFERENCES

[SIG 2023] Reinier Vis, SIG/TÜViT Evaluation Criteria Trusted Product Maintainability, Version 15.0, Software
Improvement Group, 2023.

SIG/TÜViT Evaluation Criteria trusted product maintainability: Guidance for Producers 16 / 16

Fred. Roeskestraat 115

1076 EE Amsterdam

The Netherlands

www.softwareimprovementgroup.com

marketing@softwareimprovementgroup.com

